Refine Your Search

Topic

Search Results

Journal Article

Ash Accumulation and Impact on Sintered Metal Fiber Diesel Particulate Filters

2015-04-14
2015-01-1012
While metal fiber filters have successfully shown a high degree of particle retention functionality for various sizes of diesel engines with a low pressure drop and a relatively high filtration efficiency, little is known about the effects of lubricant-derived ash on the fiber filter systems. Sintered metal fiber filters (SMF-DPF), when used downstream from a diesel engine, effectively trap and oxidize diesel particulate matter via an electrically heated regeneration process where a specific voltage and current are applied to the sintered alloy fibers. In this manner the filter media essentially acts as a resistive heater to generate temperatures high enough to oxidize the carbonaceous particulate matter, which is typically in excess of 600°C.
Technical Paper

Analysis of Oil Consumption Behavior during Ramp Transients in a Production Spark Ignition Engine

2001-09-24
2001-01-3544
Engine oil consumption is recognized to be a significant source of pollutant emissions. Unburned or partially burned oil in the exhaust gases contributes directly to hydrocarbon and particulate emissions. In addition, chemical compounds present in oil additives poison catalytic converters and reduce their conversion efficiency. Oil consumption can increase significantly during critical non-steady operating conditions. This study analyzes the oil consumption behavior during ramp transients in load by combining oil consumption measurements, in-cylinder measurements, and computer-based modeling. A sulfur based oil consumption method was used to measure real-time oil consumption during ramp transients in load at constant speed in a production spark ignition engine. Additionally in-cylinder liquid oil behavior along the piston was studied using a one-point Laser-Induced-Fluorescence (LIF) technique.
Technical Paper

An Experimental and Theoretical Study of the Contribution of Oil Evaporation to Oil Consumption

2002-10-21
2002-01-2684
Engine oil consumption is an important source of hydrocarbon and particulate emissions in automotive engines. Oil evaporating from the piston-ring-liner system is believed to contribute significantly to total oil consumption, especially during severe operating conditions. This paper presents an extensive experimental and theoretical study on the contribution of oil evaporation to total oil consumption at different steady state speed and load conditions. A sulfur tracer method was used to measure the dependence of oil consumption on coolant outlet temperature, oil volatility, and operating speed and load in a production spark ignition engine. Liquid oil distribution on the piston was studied using a one-point Laser-Induced-Fluorescence (LIF) technique. In addition, important in-cylinder variables for oil evaporation, such as liner temperature and cylinder pressure, were measured. A multi-species cylinder liner oil evaporation model was developed to interpret the oil consumption data.
Technical Paper

A Piston Ring-Pack Film Thickness and Friction Model for Multigrade Oils and Rough Surfaces

1996-10-01
962032
A complete one-dimensional mixed lubrication model has been developed to predict oil film thickness and friction of the piston ring-pack. An average flow model and a roughness contact model are used to consider the effects of surface roughness on both hydrodynamic and boundary lubrication. Effects of shear-thinning and liner temperature on lubricant viscosity are included. An inlet condition is applied by considering the unsteady wetting location at the leading edge of the ring. A ‘film non-separation’ exit condition is proposed to replace Reynolds exit condition when the oil squeezing becomes dominant. Three lubrication modes are considered in the model, namely, pure hydrodynamic, mixed, and pure boundary lubrication. All of these considerations are crucial for studying the oil transport, asperity contact, and friction especially in the top dead center (TDC) region where the oil control ring cannot reach.
Technical Paper

A Numerical Model of Piston Secondary Motion and Piston Slap in Partially Flooded Elastohydrodynamic Skirt Lubrication

1994-03-01
940696
This paper presents a numerical model of the rotational and lateral dynamics of the piston (secondary motion) and piston slap in mixed lubrication. Piston dynamic behavior, frictional and impact forces are predicted as functions of crank angle. The model considers piston skirt surface waviness, roughness, skirt profile, thermal and mechanical deformations. The model considers partially-flooded skirt and calculates the pressure distributions and friction in the piston skirt region for both hydrodynamic and boundary lubrication. Model predictions are compared with measurements of piston position using gap sensors in a single-cylinder engine and the comparison between theory and measurement shows remarkable agreement.
Journal Article

A Novel Accelerated Aging System to Study Lubricant Additive Effects on Diesel Aftertreatment System Degradation

2008-06-23
2008-01-1549
The challenge posed by the long run times necessary to accurately quantify ash effects on diesel aftertreatment systems has led to numerous efforts to artificially accelerate ash loading, with varying degrees of success. In this study, a heavy-duty diesel engine was outfitted with a specially designed rapid lubricant degradation and aftertreatment ash loading system. Unlike previous attempts, the proposed methodology utilizes a series of thermal reactors and combustors to simulate all three major oil consumption mechanisms, namely combustion in the power cylinder, evaporative and volatile losses, and liquid losses through the valve and turbocharger seals. In order to simulate these processes, each thermal reactor allows for the precise control of the level of lubricant additive degradation, as well as the form and quantity of degradation products introduced into the exhaust upstream of the aftertreatment system.
Technical Paper

A Model For Estimating Oil Vaporization From The Cylinder Liner As A Contributing Mechanism to Engine Oil Consumption

1999-05-03
1999-01-1520
A model has been developed for estimating the oil vaporization rate from the cylinder liner of a reciprocating engine. The model uses input from an external cycle simulator and an external liner oil film thickness model. It allows for the change in oil composition and the change in oil film thickness due to vaporization. It also estimates how the passage of the compression and scraper rings combine with the vaporization to influence the steady-state composition of the oil layer in the upper ring pack. Computer model results are presented for a compression-ignition engine using a range of liner temperatures, several engine speeds, and two different oils. Vaporization is found to be highly dependent on liner temperature and steady-state oil composition. The steady-state oil composition near the top of the cylinder is found to be significantly different than the composition of the oil near the bottom of the cylinder.
X